INNOVATIVE COMPLEX PROJECTS'2018/2019 REALIZATION IN THE EXAMPLES AND TASKS

The materials presented of innovative development complex projects for the master class XVI International School-seminar "Modern pedagogical technologies in Education". The materials are devoted to the results of researches of properties of technical and technological innovations of modern systems/2018/2019 as object intellectual property and distance learning, and also to the methods, models and systems of their mathematical description in the power studies and baseness. In this, phase of work in NTU KhPI" – studies the possibility of complex properties of intellectual property objects in the competency development system increasing the economic efficiency of new alternative energy sources. A review of the literature and the necessary articles written on the subject: as technologies and economies develop and become more complex, energy needs increase greatly; types and evidence-based methods of new energy and material resources, as well as the possibility of calculating the basic set of main economic indicators are classified; identified possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.

INNOVATIVE COMPLEX PROJECTS'2018/2019 IN THE EXAMPLES AND TASKS

The materials presented of innovative development complex projects for the master class XVI International School-seminar "Modern pedagogical technologies in Education". The materials are devoted to the results of researches of properties of technical and technological innovations of modern systems/2018/2019 as object intellectual property and distance learning, and also to the methods, models and systems of their mathematical description in the power studies and baseness. In this, phase of work in NTU KhPI" – studies the possibility of complex properties of intellectual property objects in the competency development system increasing the economic efficiency of new alternative energy sources. A review of the literature and the necessary articles written on the subject: as technologies and economies develop and become more complex, energy needs increase greatly; types and evidence-based methods of new energy and material resources, as well as the possibility of calculating the basic set of main economic indicators are classified; identified possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.

INNOVATIVE COMPLEX PROJECTS'2018/2019 IN THE EXAMPLES AND TASKS

In materials of the report, the possibility of the existence of possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for the economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.

INNOVATIVE COMPLEX PROJECTS'2018/2019 IN THE EXAMPLES AND TASKS

The materials presented of innovative development complex projects for the master class XVI International School-seminar "Modern pedagogical technologies in Education". The materials are devoted to the results of researches of properties of technical and technological innovations of modern systems/2018/2019 as object intellectual property and distance learning, and also to the methods, models and systems of their mathematical description in the power studies and baseness. In this, phase of work in NTU KhPI" – studies the possibility of complex properties of intellectual property objects in the competency development system increasing the economic efficiency of new alternative energy sources. A review of the literature and the necessary articles written on the subject: as technologies and economies develop and become more complex, energy needs increase greatly; types and evidence-based methods of new energy and material resources, as well as the possibility of calculating the basic set of main economic indicators are classified; identified possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.

INNOVATIVE COMPLEX PROJECTS'2018/2019 IN THE EXAMPLES AND TASKS

In materials of the report, the possibility of the existence of possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for the economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.

INNOVATIVE COMPLEX PROJECTS'2018/2019 IN THE EXAMPLES AND TASKS

In materials of the report, the possibility of the existence of possible areas of work in obtaining the necessary information and results. Energy is a fundamental input for the economic ecological safety systems. It is determined that technical means should provide a program of students' work on the content of the educational material (program of its learning process), a combination of training and education functions, strengthening the control and self-control of the process and its results of the process of learning knowledge, assistance in implementing the ideas of different and problem learning.

Keywords: intellectual property; distance learning; integrated technologies; evidence-based methods; ecological safety.
2) Intellectual property peculiarities in education competence system – docent Ageicheva Anna Oleksandrivna, Poltava National Technical Yuri Kondratyuk University, Poltava.

The presented materials are combined with a common theme technology in education, education technology and educational technology.

Master class general problem issues [1] include the notion of "educational technology", which is broader than "pedagogical technology" (for pedagogical processes).

Education includes, apart from pedagogical, a variety of social, socio-political, managerial, cultural, psychological and pedagogical, economic and other related aspects. On the other hand, the concept of "educational technology" refers to all sections of pedagogy, taking into account technology in education and technology of education.

At implementation of our complex projects development in the educational process we have obtained practical results promoting the development of intellectual and organizational skills of students who form the skills of independent, organizational and collective activities is competence, communication skills, creativity and personality of the head who generally contribute to the intensive development of scientific and technical creativity of graduates, as well as raising the general cultural level of students.

These are also developments in the field of:
1) detection and development of students' profile creative abilities, taking into account motivation to research and development activities;
2) creating the necessary conditions for supporting talented students; development the criteria for the quality of training, corresponding to the tasks and requirements of students scientific research;
3) the development of various forms of educational technology and the organization of activities aimed at the development of young athletic skills;
4) building relations with a "clean sheet";
5) research scientific novelty;
6) horizons expansion;
7) different sources usage;
8) applications preparation for international funds and programs related to the implementation of scientific developments and university patents;
9) assisting in project applications preparation, business plans and other documents in the scientific and technical field;
10) projects, programs, funds, grants monitoring and studying the possibility of participating at the university;
11) participation in the creation of partners network of international organizations on the implementation of scientific innovation projects;
12) scientists and creative teams attraction for realization scientific and technical and innovative developments;
13) interaction with representatives of the authorities in the field of program and project activity;
14) participation of the university in scientific and technical exhibitions organization, sharing information related to carried out projects, innovative developments, technical and scientific achievements in the mass media [1–3].

The presented work is based on the foundations choice and the concept methods of complex innovative projects (Table 1) with the aim of continuous implementation of the competences system in the educational process by types:

1) the discipline scope, which is taught at one department (on the basis of a course project or research work);
2) several special disciplines scope, which are taught at one department (based on course papers and bachelors projects – figure 1);
3) several special disciplines scopes, which are taught at different departments (based on course papers and projects of bachelors and masters – figure 2).

If you're an excellent communicator who wants to work with projects and are ready to enter a highly competitive industry, it could be your perfect job.

The main factors in the organization of student training, for example, in complex innovative projects, are the updating of their components intellectual property objects.

For example to submit the problem of wastes utilization and recycling is present as complex research and analysis of energy- and resource saving processes for treatment of polymer wastes of various origin [1–5].

<table>
<thead>
<tr>
<th>№</th>
<th>Stages of the functional scheme of the project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understanding and analysis – innovative technologies</td>
</tr>
<tr>
<td>2</td>
<td>Analysis of the status of the scientific problem</td>
</tr>
<tr>
<td>3</td>
<td>Search for possible options – investment strategy</td>
</tr>
<tr>
<td>4</td>
<td>Study of accumulated results</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of general and basic regularities</td>
</tr>
<tr>
<td>6</td>
<td>Determination of settlement dependencies</td>
</tr>
<tr>
<td>7</td>
<td>Realization of necessary calculations</td>
</tr>
<tr>
<td>8</td>
<td>Analysis of the results</td>
</tr>
<tr>
<td>9</td>
<td>Entering results into project components</td>
</tr>
<tr>
<td>10</td>
<td>Assessment of technical support capabilities</td>
</tr>
<tr>
<td>11</td>
<td>Development of innovative technology</td>
</tr>
</tbody>
</table>
It is necessary to determine the possibilities for further development of complex innovative projects:
1) updating of identification and analysis methods,
2) devices and equipment for research within the framework of complex innovative projects, which is the main factor determining,
3) the volume and type of intellectual property objects for the realization of the experimental results, taking into account the algorithms determined by us.

When implementing the latest development in the educational process, the practical results obtained – the promotion of the intellectual development and organizational students’ capacity, forming the independent skills, organizational and collective activities – is the competence, communication skills, creativity and personality of the manager, which generally contribute to the intensive development of scientific-technical creativity of graduates [6].

Table 2. General conclusions and recommendations of innovative complex projects

<table>
<thead>
<tr>
<th>№</th>
<th>Stages of the functional scheme of the project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Access to the market of innovative offers and expansion of the sales market</td>
</tr>
<tr>
<td>2</td>
<td>Development of the concept of innovation and execution of research works</td>
</tr>
<tr>
<td>3</td>
<td>Search for optimal components of objects and justification of optimal process parameters</td>
</tr>
<tr>
<td>4</td>
<td>Assessment of technical support capabilities</td>
</tr>
<tr>
<td>5</td>
<td>Assessment of resources and their structure, material costs, economic efficiency and impact on the environment</td>
</tr>
<tr>
<td>6</td>
<td>Investigation of the features of the developed task processes</td>
</tr>
<tr>
<td>7</td>
<td>Investment strategy for innovative technologies</td>
</tr>
<tr>
<td>8</td>
<td>Project management</td>
</tr>
<tr>
<td>9</td>
<td>Economic-law, social and environmental support</td>
</tr>
</tbody>
</table>

Table 3. The effect of process parameters on secondary polymer properties in foaming

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₁</td>
<td>Y₁ = 2987,50 + 237,50x₁ + 362,50x₂ + 337,50x₃ + 12,50x₁x₂ + 37,50x₁x₃ - 187,50x₂x₃ + 12,50x₁x₂x₃</td>
</tr>
<tr>
<td>Y₂</td>
<td>Y₂ = 44,91 + 6,58x₁ + 7,27x₂ + 9,45x₃ - 0,28x₁x₂ + 1,82x₁x₃ - 5,12x₂x₃ - 5,22x₁x₂x₃</td>
</tr>
<tr>
<td>Y₃</td>
<td>Y₃ = 0,17 + 0,0004x₁ + 0,0007x₂ + 0,0009x₃ + 0,0001x₁x₂ + 0,00013x₁x₃ - 0,0004x₂x₃ - 0,0009x₁x₂x₃</td>
</tr>
<tr>
<td>Y₄</td>
<td>Y₄ = 0, 280 - 0,083x₁ - 0,120x₂ - 0,130x₃ - 0,002x₁x₂ - 0,007x₁x₃ + 0,050x₂x₃ + 0,073x₁x₂x₃</td>
</tr>
</tbody>
</table>

The problem of wastes utilization and recycling is present as complex research and analysis of energy- and resource saving processes for treatment of polymer wastes of various origin [1–5]. Reserves of cooperation for the further identification and formation intellectual property objects of complex competency development are connected with the introduction into the educational process of partner
interuniversity relations which enable to obtain positive results: types growth, quality and quantity of intellectual innovative products in higher educational establishments; quality and quantity of innovations developed and implemented in practice in the field of new design and technological solutions.

Examples of innovative complex projects are developed based on directions and methods of design technology improvement, taking into account the conducted complex experiment and calculations in the course of performing laboratory and practical disciplines. The implementation of innovative complex projects was carried out within the range of disciplines in accordance with the curricula for students of different faculties and universities [1, 2].

As an example of synergetic approach to polymer utilization the chemical foaming method of the polyethylene waste is developed. The experiments to determine the influence of process parameters on the characteristics of polyethylene obtained after recycling process were performed. As the controlling parameters (factors) are taken: \(X_1 \) is the relative amount of foaming chemicals, \(\% \); \(X_2 \) is the temperature of foaming, \(^\circ C \); \(X_3 \) is the time of treatment at foaming temperature, min. The characteristics of the obtained polymer are: \(Y_1 \) is the number of created cells per 1 sm\(^2\) of the obtained polymer cross section; \(Y_2 \) is the relative volume of gas phase in a process of secondary polymer production, \(\% \); \(Y_3 \) is average diameter of cells; \(Y_4 \) is the density of secondary polymer.

The experiments with two level factorial design are performed at following range of factors: \(X_{10} = 3 \% \), \(\Delta X_1 = 1 \% \); \(X_{20} = 170 ^\circ C \), \(\Delta X_2 = 10 ^\circ C \); \(X_{30} = 10 \text{ min} \), \(\Delta X_3 = 5 \text{ min} \).

The resulting functions are presented in Table 3 and Figure 3, 4 for

\[
Y_4 = 0.280 - 0.083x_1 - 0.120x_2 - 0.130x_3 - 0.002x_1x_2 - 0.007x_1x_3 + 0.050x_2x_3 + 0.073x_1x_2x_3
\]

The investigation are focused in researching such problems as organization of waste collection, transportation and identification of wastes according to adapted polymers classification (Figure 5 and 6); selection of scientific based methods of wastes to be utilized or recycled; the development of appropriated process flow sheats and choice of modifications additives and equipment for polymers waste recycling as renewable energy sources.

The choice of appropriate plants with selected energy resources is very important for projects realization [6–11].

![Figure 3: X1 =4](image1)

\[
Y_4 = 0.280 - 0.083x_1 - 0.120x_2 - 0.130x_3 - 0.002x_1x_2 - 0.007x_1x_3 + 0.050x_2x_3 + 0.073x_1x_2x_3
\]

![Figure 4: X1 =2](image2)

\[
Y_4 = 0.280 - 0.083x_1 - 0.120x_2 - 0.130x_3 - 0.002x_1x_2 - 0.007x_1x_3 + 0.050x_2x_3 + 0.073x_1x_2x_3
\]

![Figure 5. Functions \(\alpha_f = f (T) \) dependence and recycled polyethylene with different amounts of gel fraction, %:](image3)

1 – 17; 2 – 34; 3 – 42
Figure 6. Study and analysis of identification

Figure 7. Study and analysis of identification
Dough refers to structured disperse systems, its rheological properties (Figure 7) depend on the structure nature, due to the chemical composition, dispersion of particles and other factors, and determine the technology features of production of various products. The structural and mechanical characteristics, in particular, the viscosity of the conditional resistance, arising in the product during its machining, and are the initial data in the equipment design, devices for transportation and the optimal conditions choice for the processing of masses: the dough is divided into classes rheological bodies, which requires the choice of the corresponding calculation equation for describing the flow in technological machines and apparatuses. The rheological properties of disperse systems are characterized by a number of constants: the elastic modulus; strength; plastic viscosity, effective, differential, etc.

Over 9 years of complex design application in the series "Innovative researches in students' scientific works" of the Bulletin of NTU "KhPI" on innovative themes of projects published more than 50 articles as project leaders and compatible articles with students from different universities, courses and faculties [1-3], as well as more than 10 tutorials and textbooks with a stamp of the Ministry of Education and Science of Ukraine (Figure 8).

Let us go forth and cooperate accurately, confidentially, completely, with integrity and professionalism. Projects build bridges between landscapes, people and history, reveals stories behind the scenery, and creates memorable and inspiring experiences.

Conclusions and recommendations.

The main result of the implemented innovation - the development of new educational technologies for the organization, execution and implementation of integrated inter-university innovation design to enhance the technical creativity of students. The pedagogical workshop contains the main methodological provisions of the project:

1) the variability of the task and the operation results of integrated innovation projects;
2) taking into account technological and other processes that depend on a large number of factors;
3) key competencies, features of the infrastructure,
A significant feature of the new educational technology is the presence of the main specific components of an optimally organized integrated innovation project as a new form of learning: a high degree of competence in the problem of faculty-organizers and, as a rule, there is sufficient practical and theoretical experience and interest in the issues solving unusual student problems during project development; professional methodological training of lecturers-organizers for the management of a comprehensive project, a rather high level of improvisation on the part of students, which necessitates the teacher’s control over the process of obtaining the final result of the project; The main goals of the teacher’s corrective actions are identification, allocation and elimination of the real reasons for the discrepancy of the results obtained in order to refer to the innovative result in the development of a comprehensive project in general.

Recommendations for further application are related to the availability in a higher educational institution:

- professional and creative decision of scientific, technical and organizational tasks;
- the possibility of expanding the educational provision and methodological literature and the application of technologies for the education integration and science;
- acquiring practical skills in real patent development;
- development of directions and technology of integrated game design;
- selection of modern complex objects for implementation of innovative technology;
- availability of testing and results dissemination in the form of articles, manuals, patent and licensed materials in magazines, exhibitions, international scientific and technical conferences on innovative methods of teaching and technical creativity of students;
- improvement of moral and material encouragement of students and teachers, etc.

The results are implemented in the technologies of modern high-efficiency methods for the processing of polymer solid wastes into products in the industry. Synergy for the formation of secondary polymer raw materials in the process of utilization-modification can be considered as the use of the features of chemical transformations in the polymer, taking into account that the main segmental movements, diffusion processes and chemical interactions occur in the amorphous phase of the polymer.

In complex systems development, project management is a key factor for innovation, for bringing together system capabilities to actually working systems and taking them to the customer. The critical question then is: How can successful project management in this field be concepualized, practiced, and understood? In the extant literature, there is a plethora of suggested tools for advanced planning and scheduling, for system decomposition and modularization, and for reducing interdependencies and avoiding errors. There is also a growing criticism of these “planning approaches,” suggesting various contingency and flexibility approaches, to reflect and adapt to complexity and change. This critique, however, tends to lack ground ed suggestions for effective managerial practices and does not distinguish between general flexibility needs and specific project structures required to make complex systems development at all possible [20].

We live in a world of constant changes. Decision making in public administration is influenced by many factors – demographic change, climate change, constraints of public finances, demand for better public services and bigger social benefits or technological transformation are just some of them. Many public administrations have come to the point where there is no easy solution to the problems, and moving on means structural reforms. We have to make decisions about whether a public administration has to continue to deliver services itself directly, should delegate them to the private sector or simply no longer take responsibility for them. The development of technology is much faster today than it was yesterday. People demand better public services that are digitalised, personal and user-friendly at the same time. It is a major challenge for public administration to keep up with the pace. In order to do that we need to be innovative and open to new ideas [21].

If you’re an excellent communicator who wants to work with projects and are ready to enter a highly competitive industry, it could be your perfect job.

Projects builds bridges between landscapes, people and history, reveals stories behind the scenery; and creates memorable and inspiring experiences. Let us go forth and cooperate accurately, confidentially, completely, with integrity and professionalism. [17–21].

Список літератури

REGULATION
About reviewing articles in a professional edition Bulletin of the National Technical University "KhPI".
Series: Innovative research in students' scientific work

GENERAL PROVISIONS
1. This Regulation regulates the procedure for reviewing articles submitted for consideration in the scientific journal of the Bulletin of the National Technical University "KhPI", a series of Innovative studies in student's research papers.
2. The review procedure covers all articles submitted for consideration by the editorial board, with the exception of general reports. The purpose of the review is the strict selection of author's manuscripts for publication in order to increase the scientific value of the articles published in the professional edition of the scientific journal of the Bulletin of the National Technical University "KhPI", a series of Innovative studies in students' scientific work, through the evaluation of materials by highly skilled experts.
3. In order to improve the quality of the review process, independent experts are invited to submit their findings in writing in an arbitrary form. Reviewers evaluate theoretical-methodological and experimental level of the article, its practical value and scientific significance; provide recommendations for the elimination of shortcomings.
4. The review procedure is aimed at the most objective assessment of the content of the scientific article, provides an analysis of the advantages and disadvantages of the materials provided and is anonymous for both the author and the reviewer (it is carried out by two reviewers independently of each other). As a reviewer is a member of the editorial board of a professional edition and a third-party highly skilled specialist who has deep knowledge of a certain scientific field and the necessary experience. Only those articles that meet the requirements of the publication, make value from a scientific point of view and contribute to solving actual problems and tasks are accepted for consideration.
5. Reviewers are reported that their manuscripts are the intellectual property of the authors. Reviewers are not allowed to make copies of the submitted article prior to its publication. The review is based on the principles of confidentiality, where information about the article (terms of receipt, content, subject matter, review features, comments to the author, final publication decisions, etc.) are not communicated to anyone other than authors and reviewers. The author may indicate the names of persons whose appointment reviewers are undesirable because of the possibility of a conflict of interest, explaining their position. The reviewer must also report a conflict of interest that may affect his opinion of the manuscript. If the reviewer has doubts about plagiarism, he must obligatorily apply to the editor-in-chief of the publication with the requirement of collective consideration of the author's article by the editorial board. All reviewers should be guided by ethical requirements in scientific publications

ORDER OF RECOGNITION OF TRANSLATION
1. By the decision of the Chief Editor, the publication of the appointment of reviewers may be entrusted to the responsible for the issue. By the decision of the Editor-in-Chief, certain articles of prominent scholars may be exempted from the standard review procedure. Articles are not reviewed, authors (co-authors) of which are members of the editorial board of the publication.
2. The review, allowed to articles, drawn up in accordance with the requirements for the registration of articles in the professional edition of the Bulletin of the National Technical University "KhPI". Series: Innovative research in students' scientific work. In the case of comments at this stage, the article is returned to the author for revision.
3. Subject to all requirements for the design, the article is transmitted to the issuer responsible for the encoding and sends the article by e-mail to a member of the editorial board responsible for the topic of the article (internal reviewer) and to the external reviewer. Within 5 days from the receipt of the article, the reviewer may refuse to review, substantiating this and notifying the person responsible for the issue in writing.
4. Reviewers who have received the coded article choose one of the recommendation options. The term of preparation of recommendations is agreed with the responsible for the issue. Recommendations sent by the reviewer to the e-mail responsible for the issue.
5. In the event of a refusal to publish or need to be revised, the reviewer must provide a written, reasoned explanation of the reasons for his decision. In case of disagreement with the opinion of the reviewer, the author has the right to provide a written, reasoned response to the Editor-in-Chief of the publication, the decision of which the article may be sent to re-reviewing another reviewer or for consideration by the editorial board.
6. The final decision on the article is taken by the Editor-in-Chief, taking into account the received reviews.
7. Further work with the article accepted for publication is carried out in accordance with the technological process of preparation of the publication. Correction of the stylistic, syntactic and punctuation nature, which does not affect the content of the article, is made by the editor without the consent of the author.
8. If the article was rejected and revised by the author taking into account the comments, the revised version is sent for re-review. Articles submitted to authors for correction must be returned no later than 2 weeks after receipt. In case of a repeated negative review, the article is rejected and is not subject to further consideration.
9. The final decision on the publication of a professional edition is fixed by the minutes of the meeting of the Academic Council of the National Technical University "Kharkiv Polytechnic Institute", which is marked on the second page of the publication.
10. The editor-in-chief, the members of the editorial board responsible for the issue, the staff of the editorial and publishing department do not enter into a discussion with the authors of rejected articles. Submissions, reviews, recommendations for each article are stored in the editorial and publishing department within 2 years from the date of submission. Responsibility for copyright infringement and non-compliance with existing standards rests with the author of the article. The author and reviewers are responsible for the authenticity of the data, the validity of the conclusions and recommendations, the scientific and practical level of the articles.
11. The review process and the procedure for taking into account the comments of the reviewers may vary.